Entropy-based Latent Structured Output Prediction - Supplementary materials

نویسندگان

  • Diane Bouchacourt
  • Sebastian Nowozin
  • Pawan Kumar
چکیده

1. Proofs In this section we derive the proofs of all propositions in the main paper. Proposition 1. The AD entropy of the generalized distribution of y can be written as the sum of the negative log-likelihood of y and the AD entropy of the conditional distribution of the hidden variable given the output, Hα,β(Q y x ;w) = − logP (y|x,w) +Hα,β(P y x ;w). (1) Proof. The AD entropy of the generalized distribution is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy and Margin Maximization for Structured Output Learning

We consider the problem of training discriminative structured output predictors, such as conditional random fields (CRFs) and structured support vector machines (SSVMs). A generalized loss function is introduced, which jointly maximizes the entropy and the margin of the solution. The CRF and SSVM emerge as special cases of our framework. The probabilistic interpretation of large margin methods ...

متن کامل

Part-based Visual Tracking with Online Latent Structural Learning: Supplementary Material

In this supplementary material, we provide more related work, more details of structured output tracking and online latent structural learning for visual tracking, and more experimental results (both qualitative and quantitative). The experimental results includes demonstration videos, more quantitative results of our tracking algorithm with and without parts in Tab. 2 and Fig. 1, more quantita...

متن کامل

Weakly Supervised Learning for Structured Output Prediction

We consider the problem of learning the parameters of a structured output prediction model, that is, learning to predict elements of a complex interdependent output space that correspond to a given input. Unlike many of the existing approaches, we focus on the weakly supervised setting, where most (or all) of the training samples have only been partially annotated. Given such a weakly supervise...

متن کامل

Supplementary Material - Efficient Structured Prediction with Latent Variables for General Graphical Models

001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 1...

متن کامل

Efficient Structured Prediction with Latent Variables for General Graphical Models

In this paper we propose a unified framework for structured prediction with latent variables which includes hidden conditional random fields and latent structured support vector machines as special cases. We describe a local entropy approximation for this general formulation using duality, and derive an efficient message passing algorithm that is guaranteed to converge. We demonstrate its effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015